Abstract

Abstract Data from the Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) network of polarimetric X-band radars are used to observe a convective storm. A fuzzy logic hydrometeor identification algorithm is employed to study microphysical processes. Dual-Doppler techniques are used to analyze the 3D wind field. The scanning strategy, sensitivity, and low-level scanning focus of the radars are investigated for influencing bulk hydrometeor identification and dual-Doppler wind retrievals. Comparisons are made with the nearby S-band polarimetric Next Generation Weather Radar (NEXRAD) prototype radar (KOUN), for consistency. Lightning data are used as an independent indicator of storm evolution for comparison with radar observations. A new methodology for retrieving the vertical wind utilizing upward and variational integration techniques is employed and shown to illustrate trends in mean wind, with particularly good results at low levels. IP1 observations of a case on 10 June 2007 show the development of the updraft, subsequent graupel echo volume evolution, and a descending downdraft preceded by significant graupel in the midlevels, with updraft and graupel volumes leading the onset of lightning. Many of these trends are corroborated by KOUN. The high temporal resolution of three minutes and near-ground sampling provided by IP1 is integral to resolving up- and downdrafts, as well as hydrometeor evolution. IP1 coverage of the upper levels is diminished compared to KOUN, impacting the quality of the dual-Doppler derived vertical winds and ice echo volumes, although the low-level coverage helps to mitigate some errors. However, IP1 coverage of the low- to midlevels is demonstrated to be comparable or better than coverage by KOUN for this storm location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.