Abstract

Manual schedule creation often involves satisfying numerous unique and conflicting constraints, which becomes more cognitively demanding when creating a common academic schedule with other individuals. Poor decision making caused by cognitive overload can result in unsuitable schedules. This study proposes the use of Boolean satisfiability (SAT) solvers in an academic scheduling system to help students balance scheduling preferences and satisfy necessary constraints. Based on the availability of courses and the scheduling preferences of users, the system automatically resolves conflicts and presents possible schedules. In a controlled experiment with 42 undergraduate students, cognitive demand was reduced by eliminating menial decisions, which significantly optimized the creation of a common schedule among peers. We found that human errors and emotional stress were diminished, and schedules created using the system were more satisfactory to participants. Finally, we present recommendations and design implications for future academic scheduling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.