Abstract
Boolean Satisfiability (SAT) is an important problem in many domains. Modern SAT solvers have been widely used in important industrial applications including automated planning and verification. To solve more problems in real applications, new techniques are needed to speed up SAT solving. Inspired by the success of common subexpression elimination in programming languages and other related areas, we study the impact of common subclause elimination (CSE) on SAT solving. Intensive experiments on many SAT solvers and benchmarks with 48-h timeout show that CSE can consistently improve SAT solving. Up to 5% more SAT13 instances can be solved after CSE. LZW-based CSE shows the best overall performance, particularly in the category of application benchmarks. A potential use of this result is that one may consider the heuristic of applying CSE to boost SAT solver performance on real life applications. Because of many possible ways to improve the benefit of CSE, we hope future research can unleash the full potential of CSE in SAT solving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.