Abstract
Techniques to reduce the energy burden of an industrial ecosystem often require solving a multiobjective optimization problem. However, collecting experimental data can often be either expensive or time-consuming. In such cases, statistical methods can be helpful. This article proposes Pareto Front (PF) and Pareto Set (PS) estimation methods using Bayesian Additive Regression Trees (BART), which is a nonparametric model whose assumptions are typically less restrictive than popular alternatives, such as Gaussian Processes (GPs). These less restrictive assumptions allow BART to handle scenarios (e.g., high-dimensional input spaces, nonsmooth responses, large datasets) that GPs find difficult. The performance of our BART-based method is compared to a GP-based method using analytic test functions, demonstrating convincing advantages. Finally, our BART-based methodology is applied to a motivating engineering problem. Supplementary materials, which include a theorem proof, algorithms, and R code, for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.