Abstract

A water supply is vital for preserving usual human living standards, industrial development, and agricultural growth. Scarce water supplies and unplanned urbanization are the primary impediments to results in dry environments. Locating suitable sites for artificial groundwater recharge (AGR) could be a strategic priority for countries to recharge groundwater. Recent advances in machine learning (ML) techniques provide valuable tools for producing an AGR site suitability map (AGRSSM). This research developed an ML algorithm to identify the most appropriate location for AGR in Iranshahr, one of the major districts in the East of Iran characterized by severe drought and excessive groundwater consumption. The area’s undue reliance on groundwater resources has resulted in aquifer depletion and socioeconomic problems. Nine digitized and georeferenced data layers have been considered for preparing the AGRSSM, including precipitation, slope, geology, unsaturated zone thickness, land use, distance from the main rivers, precipitation, water quality, and transmissivity of soil. The developed AGRSSM was trained and validated using 1000 randomly selected points across the study area with an accuracy of 97%. By comparing the results of the proposed sites with those of other methods, it was discovered that the artificial intelligence method could accurately determine artificial recharge sites. In summary, this study uses a novel approach to identify optimal AGR sites using machine learning algorithms. Our findings have practical implications for policymakers and water resource managers looking to address the problem of groundwater depletion in Iranshahr and other regions facing similar challenges. Future research in this area could explore the applicability of our approach to other regions and examine the potential economic benefits of using AGR to recharge groundwater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.