Abstract

BackgroundPenicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases.ResultsGenes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL), and eglIV, encoding LPMO (formerly endoglucanase IV) from Trichoderma reesei (TrLPMO), were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3) varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples). The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10–43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.ConclusionsThe enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable to express both heterologous enzymes simultaneously.

Highlights

  • Filamentous fungi from the Ascomycota phylum proved to be efficient producers of highly active extracellular cellulase systems [1]

  • Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL), and eglIV, encoding lytic polysaccharide monooxygenases (LPMO) from Trichoderma reesei (TrLPMO), were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter

  • The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10–43%; in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations

Read more

Summary

Introduction

Filamentous fungi from the Ascomycota phylum proved to be efficient producers of highly active extracellular cellulase systems [1]. They include various species belonging to the genera Trichoderma (T. reesei, T. longibrachiatum, T. harzianum, T. koningii, etc.), Penicillium (P. funiculosum, P. verruculosum, P. oxalicum, P. decumbens, etc.), Myceliophthora (M. thermophila), Chaetomium (C. thermophilum) and others [2,3,4,5]. Quite many fungal species produce multienzyme cocktails having a low level of the β-glucosidase (BGL) activity that is not enough for a fast conversion of cellobiose and other oligosaccharides, formed in cellulose hydrolysis under the action of cellulolytic enzymes (endoglucanases and cellobiohydrolases), to the final product, glucose [2, 6, 7]. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.