Abstract

Recently discovered Lytic Polysaccharide Mono-Oxygenase (LPMO) enhances the enzymatic deconstruction of complex polysaccharide by oxidation. The present study demonstrates the agricultural waste hydrolyzing capabilities of Paenibacillus dendritiformis CRN18, which exhibits the enzyme activity of exo-glucanase, β-glucosidase, β-glucuronidase, endo-1, 4 β-xylanases, arabinosidase, and α–galactosidase as 0.1U/ml, 0.3U/ml, 0.09U/ml, 0.1U/ml, 0.05U/ml, and 0.41U/ml, respectively. The genome analysis of strain reveals the presence of four LPMO genes, along with lignocellulolytic genes. The gene structure of LPMO and its phylogenetic analysis shows the evolutionary relatedness with the Bacillus LPMO gene. Gene position of LPMOs in the genome of strains shows the close association of two LPMOs with chitin active enzyme GH18, and the other two are associated with hemicellulases (GH39, GH23). Protein-protein interaction and gene networking of LPMO sheds light on the co-occurrence, neighborhood, and interaction of LPMOs with chitinase and xylanase enzymes. Structural prediction of LPMOs unravels the information of the LPMO's binding site. Although the LPMO has been explored for its oxidative mechanism, a little light has been shed on its gene structure. This study provides insights into the LPMO gene structure in P. dendritiformis CRN18 and its potential in lignocellulose hydrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call