Abstract

ObjectivesTo investigate the utility of three-dimensional (3D) amide proton transfer-weighted (APTw) imaging to differentiate mismatch repair deficient (dMMR) and mismatch repair proficient (pMMR) tumors in endometrioid endometrial adenocarcinoma (EEA).MethodsForty-nine patients with EEA underwent T1-weighted imaging, T2-weighted imaging, 3D APTw imaging, and diffusion-weighted imaging at 3 T MRI. Image quality and measurement confidence of APTw images were evaluated on a 5-point Likert scale. APTw and apparent diffusion coefficient (ADC) values were calculated and compared between the dMMR and pMMR groups and among the three EEA histologic grades based on the Federation of Gynecology and Obstetrics (FIGO) grading system criteria. Student’s t-test, analysis of variance with Scheffe post hoc test, and receiver operating characteristic analysis were performed. Statistical significance was set at p < 0.05.ResultsThirty-five EEA patients (9 with dMMR tumors and 26 with pMMR tumors) with good image quality were enrolled in quantitative analysis. APTw values were significantly higher in the dMMR group than in the pMMR group (3.2 ± 0.3% and 2.8 ± 0.5%, respectively; p = 0.019). ADC values of the dMMR and pMMR groups were 0.874 ± 0.104 × 10−3 mm2/s and 0.903 ± 0.100 × 10−3 mm2/s, respectively. No significant between-group difference was noted (p = 0.476). No statistically significant differences were observed in APTw values or ADC values among the three histologic grades (p = 0.766 and p = 0.295, respectively).ConclusionsAPTw values may be used as potential imaging markers to differentiate dMMR from pMMR tumors in EEA.

Highlights

  • Endometrial carcinoma (EC) is the seventh most common malignancy worldwide and the only gynecological cancer with a rising incidence and mortality rate [1]

  • An estimated 3–5% of all EC patients are concomitant with hereditary nonpolyposis colorectal cancer which is known as Lynch syndrome [8]. Mismatch repair deficiency (dMMR) is detected in more than 90% of colonic and endometrial tumors in patients with Lynch syndrome [9]

  • MR and immunohistochemical staining images of dMMR and Mismatch repair proficient (pMMR) are presented in Figs. 2 and 3

Read more

Summary

Introduction

Endometrial carcinoma (EC) is the seventh most common malignancy worldwide and the only gynecological cancer with a rising incidence and mortality rate [1]. A novel molecular classification that accurately reflects underlying tumor biology and clinical outcomes with potential targeted and immuno-oncology treatment strategies for different subgroups was recently recommended for all patients with EC. Microsatellite instabilityhigh (MSI-H) constitutes an MMR deficiency (dMMR) phenotype that is present in 20–30% of EC patients and leads to the accumulation of high mutational loads [4, 5]. Tumors without dMMR/MSI-H are considered MMR proficient (pMMR)/microsatellite stable (MSS) [6, 7]. An estimated 3–5% of all EC patients are concomitant with hereditary nonpolyposis colorectal cancer which is known as Lynch syndrome [8]. DMMR is detected in more than 90% of colonic and endometrial tumors in patients with Lynch syndrome [9]. MMR immunohistochemistry should be performed for the pre-screening of Lynch syndrome in all ECs irrespective of histologic subtype [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call