Abstract

ECG imaging estimates the cardiac electrical activity from body surface potentials. As this involves solving a severly ill-posed problem, additional information is required to get a unique and stable solution. Recent progress is based on introducing more problem-specific information by exploiting the structure of cardiac excitation. However, added information must be either certain or general enough to not impair the solution. We have recently developed a method that uses a spatio-temporal basis to restrict the solution space. In the present work, we analyzed this method with respect to one of the most fundamental assumptions made during basis creation: cardiac (an)isotropy. We tested the reconstruction using simulations of ventricular pacings and then applied it to clinical data. In simulations, the overall median localization error was smallest with a basis including fiber orientation. For the clinical data, however, the overall error was smallest with an isotropic basis. This observation suggests that modeling priors should be introduced with care, whereby further work is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.