Abstract

Abstract This article examines dynamical downscaling with a scale-selective filter in the Conformal Cubic Atmospheric Model (CCAM). In this study, 1D and 2D scale-selective filters have been implemented using a convolution-based scheme, since a convolution can be readily evaluated in terms of CCAM’s native conformal cubic coordinates. The downscaling accuracy of 1D and 2D scale-selective filters is evaluated after downscaling NCEP Global Forecast System analyses for 2006 from 200-km resolution to 60-km resolution over Australia. The 1D scale-selective filter scheme was found to downscale the analyses with similar accuracy to a 2D filter but required significantly fewer computations. The 1D and 2D scale-selective filters were also found to downscale the analyses more accurately than a far-field nudging scheme (i.e., analogous to a boundary-value nudging approach). It is concluded that when the model is required to reproduce the host model behavior above a specified length scale then the use of an appropriately designed 1D scale-selective filter can be a computationally efficient approach to dynamical downscaling for models having a cube-based geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.