Abstract

It is well known that it is necessary to introduce a length scale parameter in a continuum damage mechanics model to correctly simulate strain localization. The second gradient model, a special case of kinematically enriched continua, considers an internal length parameter by taking into account the second-order derivatives of the displacements in the virtual power principle. In this paper, we show that the original second gradient finite element of Chambon and co-workers can present spurious oscillations, especially for mode I crack propagation problems. After providing the plane stress second gradient constitutive law, we propose to add a penalty term in the original formulation in order to improve numerical convergence and to avoid spurious oscillations in the local variables distributions. Two numerical examples using classical damage mechanics laws, a three-point reinforced concrete beam and a trapezoidal notched specimen are used to test the performance of the formulation. Parametrical studies are also shown on the influence of the penalty parameter. The problem of unrealistic damage spreading for damage values close to 1, occurring often in mode I crack propagation problems, is finally discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.