Abstract
Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma distribution with unit mean and variance 1/alpha, similar to Clayton and Kaldor (1987, Biometrics 43, 671-681). We present maximum likelihood and method-of-moments estimates with standard errors for inference on alpha -1/2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two moments of the Poisson and gamma distributions but have larger standard errors than the maximum likelihood estimates. We compare these estimates with other measures of variability. Several examples suggest that the RRSD estimates have advantages compared to other measures of variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.