Abstract

We show theoretically that it is possible to trap and cool the rotational motion of a macroscopic mirror made of a perfectly reflecting spiral phase element using orbital angular momentum transfer from a Laguerre-Gaussian optical field. This technique offers a promising route to the placement of the rotor in its quantum mechanical ground state in the presence of thermal noise. It also opens up the possibility of simultaneously cooling a vibrational mode of the same mirror. Lastly, the proposed design may serve as a sensitive torsional balance in the quantum regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.