Abstract
This paper demonstrates how solution quality for multiobjective optimization problems can be improved by altering the selection phase of a multiobjective genetic algorithm. Rather than the traditional roulette selection used in algorithms like NSGA-II, this paper adds a goal switching technique to the selection operator. Goal switching in this context represents the rotation of the selection operator among a problem’s various objective functions to increase search diversity. This rotation can be specified over a set period of generations, evaluations, CPU time, or other factors defined by the designer. This technique is tested using a set period of generations before switching occurs, with only one objective considered at a time. Two test cases are explored, the first as identified in the Congress on Evolutionary Computation (CEC) 2009 special session and the second a case study concerning the market-driven design of a MP3 player product line. These problems were chosen because the first test case’s Pareto frontier is continuous and concave while being relatively easy to find. The second Pareto frontier is more difficult to obtain and the problem’s design space is significantly more complex. Selection operators of roulette and roulette with goal switching were tested with 3 to 7 design variables for the CEC 09 problem, and 81 design variables for the MP3 player problem. Results show that goal switching improves the number of Pareto frontier points found and can also lead to improvements in hypervolume and/or mean time to convergence.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have