Abstract
We aimed to incorporate a deep learning prior with k-space data fidelity for accelerating hyperpolarized carbon-13 MRSI, demonstrated on synthetic cancer datasets. A two-site exchange model, derived from the Bloch equation of MR signal evolution, was firstly used in simulating training and testing data, that is, synthetic phantom datasets. Five singular maps generated from each simulated dataset were used to train a deep learning prior, which was then employed with the fidelity term to reconstruct the undersampled MRI k-space data. The proposed method was assessed on synthetic human brain tumor images (N = 33), prostate cancer images (N = 72), and mouse tumor images (N = 58) for three undersampling factors and 2.5% additive Gaussian noise. Furthermore, varied levels of Gaussian noise with SDs of 2.5%, 5%, and 10% were added on synthetic prostate cancer data, and corresponding reconstruction results were evaluated. For quantitative evaluation, peak SNRs were approximately 32 dB, and the accuracy was generally improved for 5 to 8 dB compared with those from compressed sensing with L1-norm regularization or total variation regularization. Reasonable normalized RMS error were obtained. Our method also worked robustly against noise, even on a data with noise SD of 10%. The proposed singular value decomposition + iterative deep learning model could be considered as a general framework that extended the application of deep learning MRI reconstruction to metabolic imaging. The morphology of tumors and metabolic images could be measured robustly in six times acceleration using our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.