Abstract
Compressed Sensing (CS) is important in the field of image processing and signal processing, and CS-Magnetic Resonance Imaging (MRI) is used to reconstruct image from undersampled k-space data. Total Variation (TV) regularisation is a common technique to improve the sparsity of image, and the Alternating Direction Multiplier Method (ADMM) plays a key role in the variational image processing problem. This paper aims to improve the quality of MRI and shorten the reconstruction time. We consider MRI to solve a linear inverse problem, we convert it into a constrained optimization problem based on TV regularisation, then an accelerated ADMM is established. Through a series of theoretical derivations, we verify that the algorithm satisfies the convergence rate of O1/k2 under the condition that one objective function is quadratically convex and the other is strongly convex. We select five undersampled templates for testing in MRI experiment and compare it with other algorithms, experimental results show that our proposed method not only improves the running speed but also gives better reconstruction results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.