Abstract

Convolutional neural networks are special types of artificial neural networks that can solve various tasks in computer vision, such as image classification, object detection, and general recognition. The paper presents the basic building blocks of convolutional neural networks and their architecture, and compares their recognition accuracy with other character recognition techniques using the example of character recognition from vehicle registration plates. The purpose of the experiments was to determine the optimal configuration of the convolutional neural network and the influence of the size and design method of the training set on the recognition rate. The study shows that although convolutional neural networks have recently gained attention, traditional recognition methods are still relevant, and the choice of the right classifier and its configuration depends on the type of recognition task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.