Abstract

Artificial neural networks can solve various tasks in computer vision, such as image classification, object detection, and general recognition. Our comparative study deals with four types of artificial neural networks-multilayer perceptrons, probabilistic neural networks, radial basis function neural networks, and convolutional neural networks-and investigates their ability to classify 2D matrix codes (Data Matrix codes, QR codes, and Aztec codes) as well as their rotation. The paper presents the basic building blocks of these artificial neural networks and their architecture and compares the classification accuracy of 2D matrix codes under different configurations of these neural networks. A dataset of 3000 synthetic code samples was used to train and test the neural networks. When the neural networks were trained on the full dataset, the convolutional neural network showed its superiority, followed by the RBF neural network and the multilayer perceptron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.