7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1371/journal.pone.0297903
Copy DOIJournal: PLOS ONE | Publication Date: Apr 16, 2024 |
License type: CC BY 4.0 |
Social networks often involve the users rating each other based on their beliefs, abilities, and other characteristics. This is particularly common in e-commerce platforms where buyers rate sellers based on their trustworthiness. However, the rating tends to vary between users due to differences in their individual scoring criteria. For example, in a transaction network, a positive user may give a high rating unless the transaction was unsatisfactory while a neutral user may give a mid-rating, consequently giving the same numeric score to different levels of satisfaction. In this paper, we propose a novel method called user tendency-based rating scaling, which adjusts the current rating (its score) based on the pattern of past ratings. We investigate whether this rating scaling method can classify between "good users" and "bad users" in online trade social networks better when compared with using the original rating scores without scaling. Classifying between good users and bad users is especially important for anonymous rating networks like Bitcoin transaction networks, where users' reputations must be recorded to preclude fraudulent and risky users. We evaluate the proposed rating scaling method by performing user classification, link prediction, and clustering tasks, using three real-world online rating network datasets. We use both the original ratings and the scaled ratings as weights of graphs and use a weighted graph embedding method to find node representations that reflect users' positive and negative information. The experimental results showed that using the proposed rating scaling method outperformed using the original (i.e., unscaled) ratings by up to 17% in classification accuracy, and by up to 2.5% in link prediction based on the AUC ROC measure, and by up to 21% in the clustering tasks based on the Dunn-index.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.