Abstract
The escalating growth of content-dependent services and applications within the Internet of Things (IoT) platform has led to a surge in traffic, necessitating real-time data processing. Content caching has emerged as an effective solution to counteract this traffic upswing. Caching not only improves network efficiency but also enhances user service quality. Critical to the development of an optimal caching algorithm is the accurate prediction of future content popularity. This prediction hinges on the ability to anticipate users' content preferences, which is a pivotal method for assessing content popularity. In this study, we introduce a novel caching strategy termed User Preference-aware content Caching Strategy (UPCS) tailored for an IoT platform, where users access multimedia services offered by remote Content Providers (CPs). The UPCS encompasses three key algorithms: a content popularity prediction algorithm that utilizes Variational Autoencoders (VAE) to forecast users' future content preferences based on their prior requests, an online algorithm for dynamic cached content replacement, and a cooperative caching algorithm to augment caching efficiency. The proposed content caching strategy outperforms alternative methods, exhibiting superior cache hit rates and reduced Content Retrieval Delays (CRD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.