Abstract

A model was developed for the location of rapid charging stations for electric vehicles (EVs) in urban areas, taking into account the batteries’ state of charge and users’ charging and traveling behaviors. EVs are one means of preparing for the energy crisis and of reducing greenhouse gas emissions. To help relieve range anxiety, an adequate number of EV charging stations must be constructed. Rapid charging stations are needed in urban areas because there is inadequate space for slow-charging equipment. The objective function of the model is to minimize EVs’ travel fail distance and the total travel time of the entire network when the link flow is determined by a user equilibrium assignment. The remaining fuel range (RFR) at the origin node is assumed to follow a probabilistic distribution to reflect users’ charging behavior or technical development. The results indicate that the model described in this paper can identify locations for charging stations by using a probabilistic distribution function for the RFR. The location model, which was developed on the basis of user equilibrium assignment, is likely to consider the congested traffic conditions of urban areas, to avoid locating charging stations where they could cause additional traffic congestion. The proposed model can assist decision makers in developing policies that encourage the use of EVs, and it will be useful in developing an appropriate budget for implementing the plan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call