Abstract
The pulse amplitude ratio, the ratio of pulse pressure at the end of a Valsalva maneuver to before the onset of Valsalva, correlates with filling pressure. This study aimed to noninvasively estimate cardiac filling pressure in patients with heart failure. We developed a noninvasive handheld device to measure pulse amplitude ratio using finger photoplethysmography. In 69 patients who underwent right heart catheterization, photoplethysmography waveforms were recorded during a standardized Valsalva maneuver, and in 60 of these patients, pulse amplitude ratio was able to be calculated. Pulse amplitude ratio correlated with pulmonary capillary wedge pressure (PCWP) (r = 0.58, p <0.0001), particularly among those subjects with reduced ejection fraction (r = 0.60, p = 0.002, n = 25). A multivariable linear regression model for PCWP including pulse amplitude ratio, age, body mass index, systolic blood pressure, diastolic blood pressure, and heart rate yielded an R2 of 0.54. Difference in mean pulse amplitude ratio for subjects with a PCWP ≤15 mm Hg versus >15 mm Hg was statistically significant (p <0.0001, area under receiver operating characteristics curve 0.79 [0.66, 0.92]). Pulse amplitude ratio ≥0.55 predicted PCWP >15 mm Hg with 73% sensitivity and 77% specificity. Pulse amplitude ratio also increased by an average of 0.03 with a leg raise maneuver (p = 0.05, n = 36). In conclusion, we demonstrate that noninvasively measured response to the Valsalva maneuver in patients with HF can estimate PCWP and also detect changes within a single patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.