Abstract
Commercial microporous polypropylene (PP) membranes were modified by plasma-induced graft polymerization of acrylic acid (AAc) under UV irradiation. Under optimized conditions obtained membranes are hydrophilic and may be serviceable as separator in nickel–cadmium cell. Electrolytic resistance of modified membranes is evaluated and compared with that of commercial separators: conventional cellophane separation and hydrophilic polypropylene separation (Celgard 3501). This paper reports the maximum power test data for nickel–cadmium cells equipped with different separators. Cells with modified PP membrane show very good high-rate performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.