Abstract

AbstractSurface modification of microporous polypropylene (PP) membrane was performed by graft polymerization of acrylic acid using physisorbed initiators method. The factors effecting on the grafting degree such as monomer concentration, reaction temperature and initiator density were determined. The morphological and microstructure changes of the membrane were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The pure water contact angle, protein adsorbed amount, water flux, and antifouling property of the grafted membrane were investigated. The results indicated that the pore size and porosity of the grafted membrane were reduced and the static contact angle of pure water on the grafted membrane decreased from 108° to 40° with the increase of grafting degree. The amount of protein adsorbed on the grafted membrane decreased about 30% compared to the virgin polypropylene membrane when the grafting degree was 18.71%. Though the water flux reduced, the flux recovery of the grafted membrane increased 82.66% with the grafting degree 16.0%. The hydrophilic and antifouling property of the grafted membrane also were improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.