Abstract

Molecular quantum similarity measurements are based on a quantitative comparison of the one-electron densities of two molecules superposed and aligned to optimize a well-defined similarity function. In most previous work the densities have been related using a Dirac delta leading to the overlap-like quantum similarity function. The densities for the two molecules compared have generally been approximated often with a simple LCAO of s-gaussian functions. In this work, we present a one center two range expansion method for the evaluation of the overlap integrals involved in the overlap-like quantum similarity function over Slater type orbitals (STO). The single center and three types of two-center overlap integrals (involving four atomic orbitals; two in each molecule) have led to finite sums using a single center approach combined with selection rules obtained by analysis of orbital angular momentum (conservation). The three- and four-center integrals are also obtained analytically but involve infinite sums which require further study before leading to a complete set of integral codes for ab-initio quantum similarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.