Abstract

Molecular overlap-like quantum similarity measurements imply the evaluation of overlap integrals of two molecular electronic densities related by the Dirac delta function. When the electronic densities are expanded over atomic orbitals using the usual LCAO (Linear Combination of Atomic Orbitals) scheme, overlap-like quantum similarity integrals could be expressed as a linear combination of four-center overlap integrals. In previous works, we showed that the one-center two-range expansion method leads to very complicated analytic expressions for three- and four-center terms. This is why its use has been prevented even for two-center integrals. We also showed that the use of the Fourier transform approach, combined with the so-called B functions, leads to great simplifications in both analytical and numerical development of overlap-like quantum similarity integrals over Slater type functions. In this work, a unified analytical treatment of multicenter overlap-like quantum similarity integrals over Slater type functions is described. The Fourier transform and nonlinear transformation methods are used. The numerical results section shows that the approach described in the present work can be applied to two-, three- and four-center integrals whatever nucleus positions might be.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call