Abstract
Fe disulphides are common opaque accessories in sedimentary rocks. Both marcasite and pyrite may shed some light on the depositional environment and help determine the diagenesis of their host rocks. Quantitative ore microscopy (reflectance measurements, Vickers hardness numbers) and X-ray diffraction methods, supplemented with scanning electron microscopy and chemical analyses, were applied to pyrite (and some marcasite) hosted by sedimentary rocks spanning the interval from the Devonian to the Pliocene, and formed in various marine and continental environments. Quantitative ore microscopy of pyrites of sedimentary origin does not seem to be an efficient tool for analyzing the environment owing to the inhomogeneous nature of sulphide aggregates when viewed under the ore microscope, and the variable amounts of minor elements (e.g., As, Ni, and Co) that control the reflectance values (RV) and Vickers hardness numbers (VHN) of the host sulphides. However, such parameters as crystal habit and unit cell length of pyrite, which correlate with FeS x , are useful for environmental analysis. The redox conditions and the presence of organic remains during formation are the main factors determining these crystallographic parameters. Differences in these parameters from those of pure, ideal FeS 2 can be related to substitution of, e.g., wustite in the pyrite lattice, reflecting moderate oxidation (i.e. in the microenvironment). As far as crystal habit and length of the cell edge are concerned, late stage diagenesis is obviously less important than the microenvironment attending initial formation. The environment of deposition (i.e. the macroenvironment) of pyrite-bearing rocks has no influence on the crystal morphology or the length of the unit cell of Fe disulphide. X-ray diffraction measurements demonstrate that this method provides useful evidence on the microenvironment of sulphide precipitation around a single, equant pyrite, as well as around pyritized fossils.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have