Abstract

A simple, general method is derived for evaluating the second- and third-order WKB energy integrals by rewriting the integrals having nonintegrable singularities in terms of derivatives, with respect to the energy, of integrals having integrable singularities. As an example, it is shown that the higher-order WKB integrals vanish for the one-dimensional linear harmonic oscillator. A calculation of some eigenvalues using this method is made for potentials of the form V(x)=λx2ν and the results are compared to the ``exact'' results obtained from a numerical integration of the Schrödinger equation. It is observed that inclusion of the third-order integral improves the accuracy of WKB eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.