Abstract

Efficient numerical computation of integrals defined on closed surfaces in ℝ3 with non-integrable point singularities that arise in physical geodesy is discussed. The method is based on the use of polar coordinates and the definition of integrals with non-integrable point singularities as Hadamard finite part integrals. First the behavior of singular integrals under smooth parameter transformations is studied, and then it is shown how they can be reduced to absolutely integrable functions over domains in ℝ2. The correction terms that usually arise if the substitution rule is formally applied, in contrast to absolutely integrable functions, are calculated. It is shown how to compute the regularized integrals efficiently, and, numerical efforts for various orders of singularity are compared. Finally, efficient numerical integration methods are discussed for integrals of functions that are defined as singular integrals, a task that typically arises in Galerkin boundary element methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.