Abstract

The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, α, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the α coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (α′) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm 3 cm −3). It was not until soil water content was less than 0.14 cm 3 cm −3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm 3 cm −3 at the end of the growing season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.