Abstract
In practical applications of dynamical systems, it is often necessary to determine the number and the stability of the stationary states. The parameric respresentation method is a useful tool in such problems. Consider the two parameter families of functions:f(x) =uo +u1x +g(x), whereuo andu1 are the parameters. We are interested in the number of zeros as well as in the stability. We want to determine the “stable region” on the parameter plane, where the real parts of the roots off are negative. The D-curve (along which the discriminant off is zero) helps us. We applied the method to the cases of cubic and quartic equation, giving pictorial meaning to the root structure. In this respect, the R-curves and the I-curves (along which the sum or difference, respectively, of two zeros is constant) also have a significance. Using these concepts, we established a relation between the (n - 1)th Routh-Hurwitz condition and the Hopf bifurcation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.