Abstract

A side door impact beam absorbs energy and plays an important role in preventing intrusion of another vehicle into the occupant area. Impact beams are being actively researched to reduce vehicle weight while still meeting the strength requirements of environmental regulations and to improve fuel efficiency and enhance safety. No study has subjected a lightweight glass fiber-reinforced plastic (GFRP) impact beam to the Body in White (BIW) Federal Motor Vehicle Safety Standard (FMVSS)-214 quasi-static test. We compared three beams that differed in shape and stacking pattern. We performed three-point bending analyses, bending tests (including after bracket tightening), and static bending tests of door assemblies. The best GFRP beam (B) and a steel model were compared in terms of BIW static bending performance. The front-door GFRP beam exhibited an average reaction force 135% of that mandated by the FMVSS-214S test specification, an intermediate average reaction force 158% of that required, and a final force 154% of that required. In terms of bending performance, the initial average reaction force was 9.5% higher than that of the steel impact beam, and the rear door force was 6.6% lower. The reaction force of the GFRP beam decreased rapidly as breakage occurred after bending through 110.0–120.0 mm; however, the average reaction force was similar to that of the steel beam. Thus, the GFRP impact beam met the legal requirements but weighed 30% less than the steel beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.