Abstract

In artificial phospholipid bilayers, dual measurements of laurdan steady-state anisotropy and emission spectra can be used to identify the presence of liquid ordered phases. Human erythrocytes were used as a model to test whether similar measurements could be applied to biological samples. Specifically, laurdan anisotropy and emission spectra were obtained from native erythrocytes before and after treatment with calcium ionophore and from the microvesicles (known to be enriched in liquid ordered domains) shed from the cells during calcium entry. Spectral and anisotropy data were consistent with an increased order and reduced fluidity of erythrocyte membrane lipids upon ionophore treatment. Microvesicle membranes appeared more ordered than native erythrocytes and similar to ionophore-treated cells based on laurdan emission. In contrast, the anisotropy value was lower in microvesicles compared to ionophore-treated cells, suggesting greater probe mobility. Parallel measurements of diphenylhexatriene anisotropy corroborated the laurdan data. These results were consistent with the liquid ordered property of microvesicle membranes based on comparisons to behavior in artificial membranes. Two-photon microscopy was used to examine the distribution of laurdan fluorescence along the surface of erythrocyte membranes before and after ionophore treatment. A dual spatial analysis of laurdan anisotropy, as revealed by the distribution of laurdan emission spectra, and intensity excited by polarized light suggested that the plasma membranes of ionophore-treated erythrocytes may also exhibit elevated numbers of liquid ordered domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.