Abstract
Quercetin (QCT) is an important bioactive natural compound found in numerous edible plants. Since the lipid bilayer represents an essential compound of the cell membrane, QCT's direct interaction with this structure is of great interest. Therefore, we proposed to study the effects of QCT on DMPC liposomes containing cholesterol (Chol), and for this purpose Laurdan fluorescence was used. As a fluorescent probe, Laurdan is able to detect changes in membrane phase properties. When incorporated in lipid bilayers, Laurdan emits from two different excited states, a non-relaxed one when the bilayer packing is tight and a relaxed state when the bilayer packing is loose. The main tool for quantifying QCT's effects on phospholipid membranes containing Chol has been the analysis, the decomposition of Laurdan emission spectra in sums of two Gaussian functions on energy. This kind of approach has allowed good analysis of the balance between the two emitting states of Laurdan. Our results show that both Laurdan emission states are present to different extents in a wide temperature range for DMPC liposomes with Chol. QCT is decreasing the phase transition temperature in pure DMPC liposomes as proved by generalized polarization (GP) values. QCT also quenches Laurdan fluorescence, depending on the temperature and the presence of Chol in the membrane. Stern-Volmer constants were calculated for different lipid membrane compositions, and the conclusion was that the relaxed state favors the nonradiative transitions of the fluorophore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.