Abstract

An electronic tongue based on the transient response of an array of non-specific-response potentiometric sensors was developed. A sequential injection analysis (SIA) system was used in order to automate its training and operation. The use of the transient recording entails the dynamic nature of the sensor's response, which can be of high information content, of primary ions and also of interfering ions; these may better discriminated if the kinetic resolution is added. This work presents the extraction of significant information contained in the transient response of a sensor array formed by five all-solid-state potentiometric sensors. The tool employed was the Fourier transform, from which a number of coefficients were fed into an artificial neural network (ANN) model, used to perform a quantitative multidetermination. The studied case was the analysis of mixtures of calcium, sodium and potassium. Obtained performance is compared with the more traditional automated electronic tongue using final steady-state potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.