Abstract

The western United States faces significant forest management challenges after severe bark beetle infestations have led to substantial mortality. Minimizing costs is vital for increasing the feasibility of management operations in affected forests. Multi‐transmitter Global Navigation Satellite System (GNSS)‐radio frequencies (RF) technology has applications in the quantification and analysis of harvest system production efficiency and provision of real‐time operational machine position, navigation, and timing. The aim of this study was to determine the accuracy with which multi‐transmitter GNSS‐RF captures the swinging and forwarding motions of ground based harvesting machines at varying transmission intervals. Assessing the accuracy of GNSS in capturing intricate machine movements is a first step toward development of a real‐time production model to assist timber harvesting of beetle‐killed lodgepole pine stands. In a complete randomized block experiment with four replicates, a log loader rotated to 18 predetermined angles with GNSS‐RF transponders collecting and sending data at two points along the machine boom (grapple and heel rack) and at three transmission intervals (2.5, 5.0, and 10.0 s). The 2.5 and 5.0 s intervals correctly identified 94% and 92% of cycles at the grapple and 92% and 89% of cycles at the heel, respectively. The 2.5 s interval successfully classified over 90% of individual cycle elements, while the 5.0 s interval returned statistically similar results. Predicted swing angles obtained the highest level of similarity to observed angles at the 2.5 s interval. Our results show that GNSS‐RF is useful for realtime, model‐based analysis of forest operations, including woody biomass production logistics.

Highlights

  • Real-time data analysis using Global Navigation Satellite System (GNSS) positioning coupled with data communication over radio frequencies (RF), or GNSS is paired with RF (GNSS-RF), is an area of increasing interest in harvest operations as this new technology creates opportunities for innovation in operational forestry.Real-time data analysis and decision support may be useful in the context of woody biomass logistics as new markets for forest residues and salvage wood develop

  • Real-time data analysis using Global Navigation Satellite System (GNSS) positioning coupled with data communication over radio frequencies (RF), or GNSS-RF, is an area of increasing interest in harvest operations as this new technology creates opportunities for innovation in operational forestry

  • Transmission interval (p < 0.001), transponder location (p < 0.001), and swing angle (p < 0.001) all affected the correct classification of cycle elements (Table 1)

Read more

Summary

Introduction

Real-time data analysis using Global Navigation Satellite System (GNSS) positioning coupled with data communication over radio frequencies (RF), or GNSS-RF, is an area of increasing interest in harvest operations as this new technology creates opportunities for innovation in operational forestry. Real-time data analysis and decision support may be useful in the context of woody biomass logistics as new markets for forest residues and salvage wood develop. It has been estimated that 15 western states in the US contain over 11 million hectares of forested land that could benefit from treatments to improve resilience and health by initiating active forest management on the landscape [2]. In order to return stands to historic stand dynamics and improve forest health, silvicultural treatments need to be performed, even in stands where such treatments generate large amounts of residues and primarily yield low value products [3].

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call