Abstract

Primary culture of lung cells from CD rats was established for pulmonary genotoxicity studies using two genetic endpoints, sister-chromatid exchange (SCE) and micronucleus formation (MN). In the cell isolation study, a combined enzyme separation of rat lungs with trypsin (1.3 mg/ml) plus collagenase (50 U/ml) gave the highest yield of viable and colony-forming cells. For the MN assay, the cytokinesis block induced by cytochalasin B (CYB) was employed to enumerate MN in binucleated (BN) cells. Treatment of primary lung cells with 2 μg CYB/ml for two days appeared to be optimal for scoring micronuclei in CYB-induced BN cells. By this procedure, mitomycin C(MMC), triethylenemelamine, and benzo[ a]pyrene caused a dose-related increase in micronucleated BN cells in vitro without metabolic activation. In the SCE assay, maximum second-division metaphases were obtained after cells were incubated with bromodeoxyuridine for 48–54 h. After this incubation time, high frequencies of SCE induced by MMC and 3-methylcholanthrene after in vitro exposure (without S9 activation) or in vivo exposure were observed. The results indicate that rat primary lung cells can metabolize polycyclic aromatic hydrocarbons and that this lung cell system is potentially useful for the detection of pulmonary genotoxicants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.