Abstract

This paper was aimed to illustrate the use of process simulation tools to find bottlenecks in a chemical plant. In practice, finding the first bottleneck of a plant is simply by increasing the capacity. However, two questions remain, e.g. what would the next bottleneck be and how big the first bottleneck needs to be expanded until the next bottleneck is reached. These questions can be repeated until eventually the whole equipment in the plant needs to be debottlenecked. Since it is impossible to answer the above questions in practice, a process simulation approach is utilized. Relevant equipment data and a validated thermodynamic model are used to build such a model. Plant performance trials are taken into account to estimate practical parameters such as fouling coefficients and plate tightness. This work requires strong interactions between operational people, consistent data gathering, and process simulation skill. The approach used in this work has shown that a reasonably accurate model can be built. The result has shown that the model can identify the first bottleneck as confirmed on the field. Sequence of bottlenecks and their corresponding increment of capacity increase have also been identified. The simulation results also illustrate the use of process simulation for plant debottlenecking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.