Abstract

Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’s foods and (ii) to develop protective biofilms with these strains and test them for exclusion of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. LAB were tested for survival in acid and bile salt conditions, surface properties, biosurfactant production, β-galactosidase and gelatinase activity, antibiotic resistance and presence of virulence genes. Most strains survived exposure to pH 2 and 4% bile salts. The highest percentages of auto-aggregation were obtained after 24 h of incubation. Sixty-seven percentage auto-aggregation value was observed in W. viridescens 113 and Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7). Tests for hemolytic activity, bacterial cell adherence with xylene, and drop collapse confirmed the biosurfactant-producing ability of most strains. Only one strain (L. lactis 368) produced β-galactosidase. All strains were negative for virulence genes cob, ccf, cylLL, cylLs, cyllM, cylB, cylA and efaAfs and gelatinase production. The antibiotic susceptibility tests indicated that the MIC for ciprofloxacin, clindamycin, gentamicin, kanamycin, and streptomycin did not exceed the epidemiological cut-off suggested by the European Food Safety Authority. Some strains were resistant to one or more antibiotics and resistance to antibiotics was species and strain dependent. In the protective biofilm assays, strains L. lactis 368 (bac-), Lactobacillus curvatus MBSa3 (bac+), and Lactobacillus sakei MBSa1 (bac+) resulted in more than six log reductions in the pathogens counts when compared to the controls. This effect could not be attributed to bacteriocin production. These results suggest that these potential probiotic strains can be used as alternatives for control of biofilm formation by pathogenic bacteria in the food industry, without conferring a risk to the consumers.

Highlights

  • Lactic acid bacteria (LAB) constitute part of the autochthonous microbiota of many types of foods

  • Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7)

  • The tested LAB, especially the bacteriocin-producing Lactobacillus strains, presented high autoaggregation and co-aggregation results, Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7) and in this case pathogenic biofilms were not detected after three times of incubation tested, 24, 48, and 72; in other side the lowest coaggregation was exhibited by W. viridescens 113

Read more

Summary

Introduction

Lactic acid bacteria (LAB) constitute part of the autochthonous microbiota of many types of foods. The principal functional properties of probiotics include tolerance to acid and bile, adherence to epithelial surfaces, and antagonistic activity toward intestinal pathogens Probiotics may confer their health benefits by several mechanisms; by contributing to colonization resistance, reinforcing the intestinal barrier (i.e., tight junction expression, secretion of mucus, and antimicrobial peptides), modulating the immune system and instructing the intestinal microbiota composition and activity (Wan et al, 2015). Bacteriocin-producing Lactobacillus curvatus LTH 1174 provided protection against E. coli LTH 1600 and Listeria innocua DSM20649 invasion during transit through in a dynamic model of the human stomach and small intestine (GIT model; Ganzle et al, 1999) and bacteriocin-producing Lactobacillus sakei 2a protected gnotobiotic mice against experimental challenge with Listeria monocytogenes (Bambirra et al, 2007) These data suggest that bacteriocin-producing lactobacilli prevent new strains from invading or maintaining stable populations in the colon. Bacteriocin production is often considered a probiotic trait in this context

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call