Abstract

The aquatic ecosystem is compromised by many contaminants that may reduce ecosystem functions and severely affect human health. This study aimed at determining suitable phytoplankton bioindicators of water quality for biomonitoring of freshwater streams in the monomodal agroecological zone of Cameroon. Water physicochemical and hydrological parameters, together with phytoplankton abundance and diversity, were measured from June 2016 to May 2017 along the Benoe Stream. Principal component analysis and redundancy analysis were used to determine phytoplankton spatial and temporal distribution and identify indicator species. The Shannon-Wiener diversity and Pielou's evenness indices indicated a clean to mildly polluted stream with a diverse phytoplankton community consisting of 84 genera belonging to 51 families that was dominated by the Bacillariophyta (64%), followed by Chlorophyta (13%) and Cyanophyta (10%). The total dissolved solids, electrical conductivity, stream water velocity, and discharge were the most important stream characteristics affecting the abundance of the dominant phytoplankton genera. Seasonal variations in the stream characteristics as well as spatial community distribution along an urban-small-scale farming - large-scale farming gradient were unveiled and their influence on the phytoplankton relative abundances. Increased abundance of Synedra ulna was indicative of low TDS and EC, which was the contrary for Gyrosigma baltium dominance. High Pleurosira laevis abundance was associated with the urban zone while high Diatoma sp. and Oscillatoria sp. abundances were related to the large-scale farming zone of the stream. These phytoplankton species have good potential for use as bioindicators for stream water quality monitoring in the monomodal agroecological zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.