Abstract

In this paper both a microwave attenuation measurement along a horizontal line and multiple point gauge measurements are analyzed as possible ground-truth designs to validate satellite precipitation retrieval algorithms at the field of view spatial level (typically about 20 km). The design consists of comparing a sequence of pairs of contemporaneous measurements taken from the ground and from space. The authors examine theoretically the variance of expected differences between the two systems. The line average measurement leads to a smaller mean-square error compared to the case of a single point gauge, since some of the small-scale variability of the rain field is smoothed away by the line integration. The multiple point gauge measurements also give smaller mean-square error than that of a single point gauge. The centroid of the line and point gauge configurations are considered to be located randomly inside the field of view for different overpasses. A space-time spectral formalism is used with a noise-forced diffusive rain field to find the mean-square error. By considering instantaneous ground and satellite measurement pairs over about 50 visits when raining, we can reduce the expected error to approximately 10% of the standard deviation of climatological variability. This is considered to be a useful level of tolerance for identifying biases in the retrieval algorithms. It is found that the multiple point gauges (especially two gauges) are the economical ground-truth design compared to the microwave attenuation based on the mean-square error comparison. The major finding of this study is that a significant improvement over the point gauge is obtained by adding a single additional piece of information; adding more gauges or extending the line of attenuation is not an important improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call