Abstract

The applicability and performance of linear solvation energy relationships (LSERs) as models of responses from polymer-coated acoustic-wave vapor sensors are critically examined. Criteria for the use of these thermodynamic models with thickness-shear-mode resonator (TSMR) and surface-acoustic-wave (SAW) vapor sensors are clarified. Published partition coefficient values derived from gas-liquid chromatography (GLC) are found to be consistently lower than those obtained gravimetrically, in accordance with previous reports, suggesting that LSERs based on GLC-derived partition coefficients will not provide accurate estimates of acoustic-wave sensor responses. The development of LSER models directly from polymer-coated TSMR vapor sensor response data is demonstrated and a revised model developed from SAW vapor sensor response data, which takes account of viscoelastic changes in polymeric coating films, is presented and compared to those developed by other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call