Abstract
Use of left ventricle blood pool oxygenation-sensitive signal intensity as a measure of arterial hemoglobin saturation
Highlights
Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) relies on the attenuating effects of deoxyhemoglobin as an intrinsic contrast
When using OS-CMR to assess myocardial oxygenation, failing to account for effects on myocardial oxygen-sensitive signal intensity (OS-SI) due to arterial hemoglobin desaturation could confound results attributed to changes in perfusion and tissue metabolism
Using an animal model we first assessed if arterial saturation can be non-invasively measured using the blood pool signal (SI) in OS-CMR images, and secondly if this effect is relevant for human studies
Summary
Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) relies on the attenuating effects of deoxyhemoglobin as an intrinsic contrast. When using OS-CMR to assess myocardial oxygenation, failing to account for effects on myocardial oxygen-sensitive signal intensity (OS-SI) due to arterial hemoglobin desaturation could confound results attributed to changes in perfusion and tissue metabolism. This can be relevant when using breath-holds as a vasodilating mechanism. Using an animal model we first assessed if arterial saturation can be non-invasively measured using the blood pool signal (SI) in OS-CMR images, and secondly if this effect is relevant for human studies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.