Abstract

Ammonia desulfurization is a typical resource-recovery-type wet desulfurization process that is widely used in coal-fired industrial boilers. However, the sulfur recovery is limited by the low oxidation rate of byproduct (ammonium sulfite), leading to secondary SO2 pollution due to its easy decomposability. In addition, the high toxic arsenic trace substances coexisting in desulfurization liquids also reduce the quality of the final sulfate product, facing with high environmental toxicity. In this study, nitrogen-doped porous carbon coembedded with lanthanum and cobalt (La-Co@NPC) was fabricated with heterologous catalytic active sites (Co0) and adsorption sites (LaOCl) to achieve sulfite oxidation and the efficient removal of high toxic trace arsenic for the recovery of high-value ammonium sulfate from the desulfurization liquid. The La-Co@NPC/S(IV) catalytic system can generate numerous strongly oxidizing free radicals (·SO5- and ·O2-) for the sulfite oxidation on the Co0 site, as well as oxidative detoxification of As(III) into As(V). Subsequently, arsenic can be removed through chemical adsorption on LaOCl adsorption sites. By using the dual-functional La-Co@NPC at a concentration of 0.25 g/L, the rate of ammonium sulfite oxidation reached 0.107 mmol/L·s-1, the arsenic (1 mg/L) removal efficiency reached 92%, and the maximum adsorption capacity of As reached up to 123 mg/g. This study can give certain guiding significance to the functional material design and the coordinated control of multiple coal-fired pollutants in desulfurization for high-value recovery of sulfur resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.