Abstract
Wood harvesting with the use of wheeled harvesters is now common in Polish and Czech forests. While moving in the forest, the wheels of these machines affect the forest soil and the extent of this impact is interesting. The paper presents the results of measurements of the changes that occur in the soil on the operational trails after the timber harvesting using the Entracon Sioux EH30 thinning harvester. The measurements were taken on fragments of three operational trails, in and between the ruts and at a distance of 1.0 m off the trail. An impact penetrometer was used to measure the penetration resistance, soil samples were collected to determine the bulk density and moisture content, and soil deformations on the trail were measured with a profile meter. Unit pressures exerted by harvester wheels on the ground were determined. It was shown that in the places where the harvester wheels pass, even of a small weight (5.73 tons, 8 wheels) and with unit pressures of the wheels on the ground <50 kPa, changes in soil parameters occurred. A statistically significant increase in penetration resistance in relation to the control occurred at a depth of up to 35 cm, while at a depth of up to 5 cm the increase was more than 2-fold. There was also a slight decrease in soil moisture content (up to 7.9%) and an increase (up to 8.4%) in bulk density in the ruts, while rut depths were small and reached 4 cm. As it was shown, the impact penetrometer, simple in design, which was assumed to be used for measurements, and which is not used in this type of research in forestry, despite its limitations, can be used to determine the compactness of the soil and its changes resulting from machine work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.