Abstract
ABSTRACT This paper describes the identification and differentiation of phytoplasmas by a highly sensitive diagnostic technique, DNA heteroduplex mobility assay (HMA). Closely related phytoplasma isolates of clover proliferation (CP), potato witches'-broom (PWB), and alfalfa witches'-broom (AWB) were collected from the field from 1990 to 1999. The entire 16S rRNA gene and 16/23S spacer region were amplified by polymerase chain reaction (PCR) from the field samples and standard CP, PWB, and AWB phytoplasmas and were subjected to restriction fragment length polymorphism (RFLP) analysis and HMA. Two subgroups (I and II) of phytoplasmas in the CP group were identified by HMA but not by RFLP analysis. The results were confirmed by 16/23S spacer region sequence data analysis. After HMA analyses of the PCR-amplified 16/23S spacer region, 14 phytoplasma isolates from field samples were classified into two aster yellows subgroups: subgroup I, phytoplasma isolates from China aster (Callistephus chinensis) yellows, French marigold (Tagetes patula) yellows, cosmos (Cosmos bipinnatus cv. Dazzler) yellows, clarkia (Clarkia unguiculata) yellows, California poppy (Eschscholzia californica cv. Tai Silk) yellows, monarda (Monarda fistulosa) yellows, and strawflower (Helichrysum bracteatum) yellows; and subgroup II, phytoplasma isolates from zinnia (Zinnia elegans cv. Dahlia Flower) yellows, Queen-Annes-Lace (Daucus carota) yellows, scabiosa (Scabiosa atropurpurea cv. Giant Imperial) yellows, Swan River daisy (Brachycombe multifida cv. Misty Pink) yellows, pot marigold (Calendula officinalis) yellows, purple coneflower (Echinacea purpurea) yellows, and feverfew (Chrysanthemum parthenium) yellows. The results indicate that HMA is a simple, rapid, highly sensitive and accurate method not only for identifying and classifying phytoplasmas but also for studying the molecular epidemiology of phytoplasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.