Abstract

Groundwater is a major source of drinking and agricultural water supply in arid and semiarid regions. Poor groundwater quality can be a threat to human health especially when it is combined with hazardous pollutants like heavy metals. In this study, an innovative method involving entropy weighted groundwater quality index for both physicochemical and heavy metal content was used for a semiarid region. The entropy weighted index was used to assess the groundwater’s suitability for drinking and irrigation purposes. Thus, groundwater from 19 sampling sites was used for analyses of physicochemical properties (electrical conductivity—EC, pH, K+, Ca2+, Na+, SO42−, Cl−, HCO3−, TDS, NO3−, F−, biochemical oxygen demand—BOD, dissolved oxygen—DO, and chemical oxygen demand—COD) and heavy metal content (As, Ca, Sb, Se, Zn, Cu, Ba, Mn, and Cr). To evaluate the overall pollution status in the region, heavy metal indices such as the modified heavy metal pollution index (m-HPI), heavy metal evaluation index (HEI), Nemerow index (NeI), and ecological risks of heavy metals (ERI) were calculated and compared. The results showed that Cd concentration plays a significant role in negatively affecting the groundwater quality. Thus, three wells were classified as poor water quality and not acceptable for drinking water supply. The maximum concentration of heavy metals such as Cd, Se, and Sb was higher than permissible limits by the World Health Organization (WHO) standards. However, all wells except one were suitable for agricultural purposes. The advantage of the innovative entropy weighted groundwater quality index for both physicochemical and heavy metal content, is that it permits objectivity when selecting the weights and reduces the error that may be caused by subjectivity. Thus, the new index can be used by groundwater managers and policymakers to better decide the water’s suitability for consumption.

Highlights

  • Groundwater plays a major role in supplying water for drinking, agricultural, and industrial uses [1,2,3]

  • The main objective of the current study is to test an innovative method involving entropy weighted groundwater quality index (EWQI) for both physicochemical and heavy metal content in a semiarid region that can be used by decision and policymakers for improving water resources management

  • The first and second demonstrate the sustainability of groundwater for drinking and irrigation purposes, respectively

Read more

Summary

Introduction

Groundwater plays a major role in supplying water for drinking, agricultural, and industrial uses [1,2,3]. For arid and semiarid regions, groundwater resources are especially important in terms of quantity and quality. Under these climatic conditions, groundwater overconsumption has led to decreased quality or contamination that may impose hazards to society [4,5]. There are various methods for dealing with heavy metal pollution in groundwater resources. These could be pumped and treated [6], be absorbed [7] by various kinds of absorbents [8], captured by nanoparticles [9] in micromixers [10,11], and removed by more natural solutions like wetlands [12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call