Abstract

Silver was incorporated up to 3.4% (w/w) into the geopolymer structure via precipitation as Ag2O by dispersing the geopolymer powder in an aqueous solution of AgNO3. The precipitates were mainly located in the fine pores within the nanoparticles of the geopolymer network. The fine pores enabled the formation of very fine precipitates, mainly between 2 and 5 nm. The silver-incorporated geopolymer was found to have a sustained Ag+ release that can be tuned down by a thermal treatment, e.g., calcination. The Ag+ release amount could be reduced by about 30-fold after calcination at 850 °C. Calcination reduces the specific surface area, causes shrinkage, and makes the geopolymer structure less pervious. The size of the precipitates remains stable even up to 1050 °C, despite a large amount of sintering-related shrinkage. These results suggest that geopolymers could be a tunable Ag+ source for various antibacterial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.