Abstract
Estuaries provide nursery habitats for a variety of fish species of different ecological guilds and have complicated environmental conditions. In this study, we applied ensemble species distribution models (SDMs) to four abundant and different ecological guild larval fish species (Hemiculter bleekeri (freshwater guild), Pseudolaubuca sinensis (freshwater guild), Coilia mystus (brackish water guild), and Engraulis japonicus (marine guild)) to explore their suitable habitats and the fish–habitat relationships in the Yangtze Estuary. The results showed that random forest (RF) demonstrated the best performance in all single algorithms and the surface range envelop (SRE) model was scarcely accurate. The ensemble SDMs demonstrated a superior predictive ability compared with any single algorithm, with the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC) scores being above 0.899 and 0.641, respectively. Binary presence–absence maps showed the different spatial distribution patterns of the four species. We primarily found the freshwater species (P. sinensis and H. bleekeri) present in the South Branch (west of 122° E), whereas we found the marine species (E. japonicus) anywhere except inside the South Branch (west of 121.8° E). The area for P. sinensis (1615.93 km2) was relatively larger than that for H. bleekeri (1136.87 km2). We predicted that the brackish water species (C. mystus) would most likely be present inside the North Branch (west of 122° E), Eastern Chongming, and outside the South Branch (east of 121.8° E). Salinity, as a key environmental variable, contributed to the spatial variability. A low salinity (sea surface salinity (SSS) < 3) was beneficial for P. sinensis and H. bleekeri but was not suitable for E. japonicus. The SSS suitable range for C. mystus was 5–10 and 12–20. Multiple ecological guild species dwelled in the confluence of salt and fresh water. Our results will play an important role in the design of specific conservation strategies for fishery resources in this area.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have