Abstract

A better understanding is required of the potential of soil biota in controlling the availability and mobility of heavy metals and ascertaining their toxicity. The objectives of this work are to assess, first, the modification of heavy metal speciation induced by earthworms Eisenia andrei and, second, the consequence of this metal speciation change on soil enzyme activities as an easy bioindicator of stress. The experiment was conducted on six sites from Jebel Ressas Mines, which are characterized by a gradient heavy metal contamination (Pb, Zn, and Cd). Earthworms E. andrei were introduced in these six soils for 60 days. We had performed heavy metal speciation both in the presence and absence of worms. Modifications of activities of seven enzymes implicated in C, N, and P biochemical cycles were used as a bioindicator of metal stress. We had used the co-inertia statistical method to evaluate the correlation between change in heavy metal speciation induced by earthworms and the enzyme activities in soils. Our results suggested that earthworms modified the heavy metal dynamic and speciation. They decrease the amount of metal associated with the most available fraction, such as exchangeable one, and increase the amount of metal bound to the more stable fraction, like Mn and Fe oxide ones. On the same hand, enzyme activities increased in majority of the soils, following earthworm activity, but this effect is dependent on the amount of soil contamination. Moreover, the co-inertia results denote that change in heavy metal speciation significantly influences the soil enzyme activities in Jebel Ressas soils, especially β-glucosidase, urease, deshydrogenase, and fluorescein diacetate hydrolysis (FDA), and can be considered as bioindicators of metal toxicity and biological quality in the contaminated area. By reducing the availability of heavy metals, the earthworms are useful in the bioremediation of heavy metal contaminated soils. Soil enzymes β- glucosidase, urease, deshydrogenase, and FDA can be used to assess the changes in metal speciation and can let us, therefore, predict if the soils are bioremediated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.